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SI Text
Here, I provide additional information regarding the statistical
model used to perform inference regarding the relative merit of
R01 proposals as described in the main text and provide details
of higher stage assumptions on model hyperparameters, poste-
rior estimation, procedures, and model diagnostics.

Higher Stage Models. For many of the first-stage model hyperpa-
rameters, the large volume of data available for parameter
estimation obviates the need for careful prior specification. The
exception to this rule occurs for the category threshold vectors
�m, which contain 40 components. These vectors must be
estimated not only for large study sections in which proposals are
rated by 30 or more reviewers, but must also be estimated in
special emphasis panels in which only 3 or 4 raters score a single
proposal. An informative second stage prior model for these
vectors is thus potentially important for interpreting scores
collected from smaller study sections. A prior model for the
vectors �m was defined as a transformation of Dirichlet proba-
bilities to the N(0,1 � �0

2) scale upon which reader pre-scores
were collected. Letting pm,c denote the probability that a reader
in study section m assigns pre-score c to a randomly selected
proposal, and letting C � 41 denote the number of ordinal
categories into which proposals were assigned, then a prior
density on �m was defined by assuming that

pm � �pc,m�c�1 � Dir��� , � � ��h� , [1]

where

pm.c � ���m,c: 0, 1 � �0
2� � ���m,c�1; 0, 1 � �0

2�, [2]

�m,0 � �	, �m,c � 	, and �(�; a, b) denotes the distribution
function of a normal random variable with mean a and vari-
ance b.

Proper prior densities were assumed for the remaining model
parameters. Components of � were assumed a priori to be
independently distributed according to Cauchy distributions
truncated to the interval (0, 	). Similar results were obtained
when the Jeffreys prior for a Dirichlet parameter was assumed
for �. The prior densities assumed for the parameters a, b, and
c were assumed to be unit exponential densities. These priors
reflect a prior belief that scoring weights can assume values close
to 0, and such values are most likely when these three hyperpa-
rameters assume values 
1. Independent inverse gamma distri-
butions with unit scale and shape parameters were assumed for
the values of the variance parameters �0

2, �1
2, �2

2 and �2. Although
long-tailed, this distribution places significant prior mass 
1.0
and has its mode at 0.5. Because the latent proposal scores were
assumed a priori to be independently generated from a standard
normal distribution, rater variance parameters �2.0 were re-
garded as unlikely. Varying the hyperparameters assumed for
the distributions of (a, b, c, �0

2, �1
2, �2

2, �2) within a factor of 2 did
not lead to significant changes in the posterior distributions on
these parameters.

Posterior estimation and model checks. The volume and structure
of the proposal rating data and the hierarchical model specifi-
cation prevent fitting of model parameters with standard soft-
ware packages. As a consequence, the author created customized
C code that implemented a random walk Metropolis–Hastings
algorithm to sample from the posterior distribution on the

parameter space (e.g., refs. 1–3). An outline of procedures used
to validate this code follow.

To begin, an arbitrary subset of the R01 data were selected for
study. This subset contained data collected from 20 review
groups over two rating cycles for 549 proposals. Attention was
restricted to this subset to speed the convergence of MCMC
algorithms, which was particularly useful during the model
validation phase when numerous variations of the model were fit
to data. Final summaries of proposal merit within this subset
were based on running the Metropolis-Hastings algorithm for a
burn-in period of 100,000 updates; 150,000 subsequent updates
were then used for model inference.

Aside from function-level programming checks performed
during code development, the final code was validated by using
data simulated from the assumed model for a variety of values
of model hyperparameters (i.e., �0

2, �1
2, �,2

2, �2, a, b, c, and �). To
replicate the data structure, reader pre-scores, reader post-
scores and non-reader scores were simulated for scores actually
observed in the data. Missing values in the real data were left as
missing in the simulated data. The MCMC algorithm was applied
to several sets of data simulated in this way, and in each case the
correspondence between the posterior distributions of model
parameters and data-generating parameters was examined. For
reader, proposal, and study section parameters, correlations
between simulation truth and posterior means were assessed,
whereas the posterior distributions on higher-level model hy-
perparameters (e.g., variance parameters and Dirichlet mixing
parameters a, b and c) were compared with their true values.
Satisfactory associations were achieved in all cases. Convergence
of the MCMC algorithm was monitored by tracking values of
model hyperparameters, and values of �� , ��i

2, and �rj
2, across

iterations.
Simulated data were also used to evaluate whether general

features of the data were captured by the hierarchical structure
assumed for the generation of reader post-scores and non-reader
scores. Figs. S1 and S2 depict histogram displays of non-reader
scores for data simulated from the model and actual data. A
posterior sample of hyperparameter values {�0

2, �1
2, �2

2, �2, a, b,
c, �} was used to simulate the data reflected in Fig. S1; all other
model parameters and data were generated from these. These
figures illustrate the locations of non-reader proposal scores
relative to the minimum and maximum reader post-scores as a
function of the difference between minimum and maximum
post-scores. Subplots in these figures were constructed by iden-
tifying all proposals for which the minimum and maximum
reader post-scores differed by a specified value, and then
constructing a histogram of the difference between the non-
reader scores and the minimum reader post-score. In general,
when the differences between maximum and minimum reader
post-scores is greater than 0.6, the majority of non-reader
scores tends to be distributed approximately uniformly within
the range established by the minimum and maximum values.
When this range is 
0.6, non-reader scores tend to be concen-
trated near the midpoint of this interval and a slightly higher
proportion of scores fall outside of the range defined by the
readers. Note the close correspondence between the shapes of
the histograms depicted in Figs. S1 and S2. More formal model
assessment was performed by comparing the posterior distribu-
tions of pivotal quantities to their nominal distributions. Fig. S3
displays a quantile-quantile plot of proposal means observed at
the end of a MCMC run of the algorithm. Because the distri-
bution of a pivotal quantity evaluated at a draw from the
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posterior distribution is the same as the distribution of a pivotal
quantity evaluated at the data generating parameter, these plots
can be used to construct model diagnostics with known reference
distributions (4). For example, at a value of � sampled from the
posterior distribution, �� � �j�j/J is marginally distributed as a
�(0, 1/J) random variable, and s2 � �j �j

2 is marginally distrib-
uted as a 	J

2 random variable. The observed values of �� and s2

were �0.10 and 0.87, respectively, for the values displayed in Fig.
S3. Both values indicate some model lack-of-fit, which may be

partially explained by the tendency of raters to score proposals
on 1/2 unit values. It is also likely that the distributions of reader
and non-reader errors is not normal on the scale of measurement
assumed for the proposal merits. However, these deviations do
not appear overly severe and suggest that this baseline model is
adequate for obtaining first-order approximations to the order-
ing of proposal merits with study sections, as well as the
uncertainty inherent to these orderings. Posterior means of
model hyperparameters appear in Table S1.

1. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of
state calculations by fast computing machines. J Chem Phys, 21:1087–1092.

2. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57:97–109.

3. Gelfand A, Smith AFM (1990) Sampling-based approaches to calculating marginal
densities. J Am Stat Assoc 85:398–409.

4. Johnson VE (2007) Bayesian model assessment using pivotal quantities. Bayesian Anal
2:719–734.

Johnson www.pnas.org/cgi/content/short/0804538105 2 of 6

http://www.pnas.org/cgi/data/0804538105/DCSupplemental/Supplemental_PDF#nameddest=SF5
http://www.pnas.org/cgi/data/0804538105/DCSupplemental/Supplemental_PDF#nameddest=SF5
http://www.pnas.org/cgi/data/0804538105/DCSupplemental/Supplemental_PDF#nameddest=ST1
http://www.pnas.org/cgi/content/short/0804538105


0

D
en

si
ty

−2 −1 0 1 2 3 4

0
1

2
3

4
5

0.1

D
en

si
ty

−2 −1 0 1 2 3 4

0
1

2
3

0.2

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

1.
0

2.
0

0.3

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

1.
0

2.
0

0.4

D
en

si
ty

−2 −1 0 1 2 3 4
0.

0
1.

0
2.

0

0.5

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

1.
0

2.
0

0.6

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

0.7

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

0.8
D

en
si

ty
−2 −1 0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

0.9

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

0.
4

0.
8

1.
2

1

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

1.
0

2.
0

1.1

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

0.
4

0.
8

1.2

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

0.
4

0.
8

1.
2

1.3

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

0.
4

0.
8

1.
2

1.4

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

0.
4

0.
8

1.
2

Fig. S1. Plots of the difference between simulated non-reader scores and the minimum simulated reader post-score for various values of difference between
the maximum and minimum reader post-scores. The horizontal axes are labeled with latter difference, and vertical lines indicate the interval defined by the
simulated reader post-scores.
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Fig. S2. Plots of the difference between non-reader scores and the minimum reader post-score for various values of difference between the maximum and
minimum reader post-scores. The horizontal axes are labeled with latter difference, and vertical lines indicate the interval defined by the reader post-scores.
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Fig. S3. Normal scores plot of a posterior sample of {�i} values.
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Table S1. Posterior means of model hyperparameters

Hyperparameter σ2
0 σ2

1 σ2
2 τ2 a b c ζ

Posterior Mean 0.41 0.041 0.017 0.041 0.61 0.47 0.19 -.16
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